Quiz Softskill..

* Komputasi Modern *

  1. Apa yang kamu ketahui tentang komputasi modern ?
  2. Jelaskan sejarah komputasi modern !
  3. Sebutkan macam-macam komputasi modern ?

 Jawab #

1. Komputasi Modern

Komputasi modern terdiri dari dua kata yaitu komputasi dan modernKomputasi dapat diartikan sebagai cara untuk menemukan pemecahan permasalahan dari data input dengan suatu algoritma. Komputasi merupakan subbagian dari matematika. Selama ribuan tahun, perhitungan dan komputasi menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental dan kadang-kadang menggunakan tabel. disebut modern karena menggunakan alat canggih saat menyelesaian masalah. Maka dapat di simpulkan Komputasi modern adalah perhitungan yang menggunakan computer canggih dimana pada computer tersebut tersimpan sejumlah algoritma untuk menyelesaikan masalah perhitungan secara efektif dan efisien. Komputasi modern digunakan untuk memecahkan masalah antara lain untuk menghitung:

  • Akurasi (bit, floating point)
  • Kecepatan (dalam satuanHz)
  • Problem volume besar (paralel)
  • Modeling (NN dan GA)
  • Kompleksitas (menggunakan Teori Bog O)

Secara umum ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.
Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.

Model Komputasi

Komputasi memiliki 3 model, yaitu

  1. Mesin Mealy
  2. Mesin Moore
  3. Petri net

Karakteristik komputasi modern ada 3 macam, yaitu :

  1. Komputer-komputer penyedia sumber daya bersifat heterogenous karena terdiri dari berbagai jenis perangkat keras, sistem operasi, serta aplikasi yang terpasang.
  2. Komputer-komputer terhubung ke jaringan yang luas dengan kapasitas bandwidth yang beragam.
  3. Komputer maupun jaringan tidak terdedikasi, bisa hidup atau mati sewaktu-waktu tanpa jadwal yang jelas.

Dampak adanya komputasi modern

Dampak dari adanya komputasi modern ialah semakin mempermudah manusia dalam menyelesaikan masalah-masalah perhitungan yang sangat kompleks dengan menggunakan komputer dan juga merupakan sebuah pengembangan dari sistem yang ada yang terus di perbarui hingga sekarang.

2. Sejarah Komputasi Modern

Konsep dasar arsitektur komputer modern adalah konsep sebuah sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory. Konsep ini pertama kali digagasi oleh John Von Neumann. Beliau di lahirkan di Budapest, ibukota Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Karya – karya yang dihasilkan adalah karya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kepiawaian John Von Neumann teletak pada bidang teori game yang melahirkan konsep automata, teknologi bom atom dan komputasi modern yang kemudian melahirkan komputer. Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern. Von Neumann juga ahli dalam bidang komputasi. Von Neumann menjadi seorang konsultan pada pengembangan komputer ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah seperangkat komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Komputasi sebenarnya telah dilakukan manusia sejak berabad-abad yang lalu. Komputasi berawal dari pehitungan angka. Hal tersebut dilihat dari manusia yang telah dapat menghitung, menghitung berbagai hal. Zaman dahulu, manusia telah bisa melakukan perhitungan sederhana untuk sisitem barter barang. Sistem kalender dan rasi bintang bahkan telah dilakukan manusia sejak zaman romawi. Manusia telah memilki akal untuk melakukan perhitungan-perhitungan tersebut. Namun, dikarenakan setiap manusia mempunyai keterbatasan, tak semua perhitungan bisa dilakukan otak manusia. Apalagi jika perhitungan tersebut memiliki banyak angka. Oleh sebab itu, manusia membuat suatu alat perhitungan yang bisa membantu pekerjaannya.

3. Macam-Macam Komputasi Modern

Jenis-jenis komputasi modern ada 3 macam, yaitu :

1. Mobile Computing atau Komputasi Bergerak

Mobile computing (komputasi bergerak) merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel serta mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel. Berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan  perubahan dari sisi manusia maupun alat. Contoh dari mobile computing adalah GPS, smart phone, dan sebagainya.

2. Grid Computing

Komputasi grid memanfaatkan kekuatan pengolahan idle berbagai unit komputer, dan menggunakan kekuatan proses untuk menghitung satu pekerjaan. Pekerjaan itu sendiri dikontrol oleh satu komputer utama, dan dipecah menjadi beberapa tugas yang dapat dilaksanakan secara bersamaan pada komputer yang berbeda. Tugas-tugas ini tidak perlu saling eksklusif, meskipun itu adalah skenario yang ideal. Sebagai tugas lengkap pada berbagai unit komputasi, hasil dikirim kembali ke unit pengendali, yang kemudian collates itu membentuk keluaran kohesif. omputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar. Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :

  • Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
  • Sistem menggunakan standard dan protocol yang terbuka.
  • Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.

Keuntungan dari komputasi grid adalah dua kali lipat: pertama, kekuatan pemrosesan yang tidak digunakan secara efektif digunakan, memaksimalkan sumber daya yang tersedia dan, kedua, waktu yang dibutuhkan untuk menyelesaikan pekerjaan besar berkurang secara signifikan.

Idealnya kode sumber harus direstrukturisasi untuk membuat tugas-tugas yang saling eksklusif adalah sebagai mungkin. Itu tidak berarti bahwa mereka tidak bisa saling bergantung, tetapi pesan yang dikirim antara tugas-tugas meningkatkan faktor waktu. Satu pertimbangan penting saat membuat pekerjaan komputasi grid adalah bahwa apakah kode dijalankan serial atau paralel tugas, hasil dari keduanya harus selalu sama di setiap situasi.

3. Cloud Computing atau Komputasi Awan

Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet. Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Cloud computing adalah perluasan dari konsep pemrograman berorientasi objek abstraksi. Abstraksi, sebagaimana dijelaskan sebelumnya, menghapus rincian kerja yang kompleks dari visibilitas. Semua yang terlihat adalah sebuah antarmuka, yang menerima masukan dan memberikan output. Bagaimana output ini dihitung benar-benar tersembunyi.

Perbedaan komputasi mobile, komputasi grid dan komputasi cloud :

  • Komputasi mobile menggunakan teknologi komputer yang bekerja seperti handphone, sedangkan komputasi grid dan cloud menggunakan komputer.
  • Biaya untuk tenaga komputasi mobile lebih mahal dibandingkan dengan komputasi grid dan cloud.
  • Komputasi mobile tidak membutuhkan tempat dan mudah dibawa kemana-mana, sedangkan grid dan cloud membutuhkan tempat yang khusus.
  • Untuk komputasi mobile proses tergantung si pengguna, komputasi grid proses tergantung pengguna mendapatkan server atau tidak, dan komputasi cloud prosesnya membutuhkan jaringan internet sebagai penghubungnya.

Persamaan komputasi mobile, komputasi grid dan komputasi cloud :

  • Ketiganya merupakan metode untuk melakukan komputasi, pemecahan masalah, dan pencarian solusi.
  • Ketiganya memerlukan alat proses data yang modern seperti komputer, laptop atau telepon genggam untuk menjalankannya.

# Paralel Processing #

  1. Apa yang kamu ketahui tentang komputasi ?
  2. Apa yang kamu ketahui tentang paralel processing ?
  3. Jelaskan hubungan antara komputasi modern dengan paralel processing !

 Jawab #

 1. Komputasi

Komputasi dapat diartikan sebagai cara untuk menemukan pemecahan permasalahan dari data input dengan suatu algoritma. Komputasi merupakan subbagian dari matematika. Selama ribuan tahun, perhitungan dan komputasi menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental dan kadang-kadang menggunakan tabel. disebut modern karena menggunakan alat canggih saat menyelesaian masalah. Maka dapat di simpulkan Komputasi modern adalah perhitungan yang menggunakan computer canggih dimana pada computer tersebut tersimpan sejumlah algoritma untuk menyelesaikan masalah perhitungan secara efektif dan efisien. Komputasi modern digunakan untuk memecahkan masalah antara lain untuk menghitung:

  • Akurasi (bit, floating point)
  • Kecepatan (dalam satuanHz)
  • Problem volume besar (paralel)
  • Modeling (NN dan GA)
  • Kompleksitas (menggunakan Teori Bog O)

Secara umum ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.
Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.

Model Komputasi

Komputasi memiliki 3 model, yaitu

  1. Mesin Mealy
  2. Mesin Moore
  3. Petri net
2. Paralel Processing

Paralel processing komputasi adalah proses atau pekerjaan komputasi di komputer dengan memakai suatu bahasa pemrograman yang dijalankan secara paralel pada saat bersamaan. Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal. Penggunaan komputasi parallel prosessing merupakan pilihan yang cukup handal untuk saat ini untuk pengolahan data yang besar dan banyak. Yang mempunyai tujuan untuk dapat mempercepat dalam hal mengatasi suatu permasalahan. Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing.

Terdapat beberapa konfigurasi yang harus dilakukan dalam penggunaan parallel processing yaitu :

  • Perangkat keras komputer diharuskan melakukan penyetinggan dengan sistem shared memory.
  • Melakukan penyetinggan processor yang memiliki memory masing-masing.
  • Melakukan beberapa / banyak processor yang terhubung ke dalam suatu jaringan untuk melakukan pekerjaan yang sama dengan cara simultan yaitu bersama-sama.

Aspek keamanan merupakan suatu aspek penting dalam sistem parallel prosessing komputasi ini, karena didalam sistem akan banyak berkaitan dengan akses data, hak pengguna, keamanan data, keamanan jaringan terhadap peyerangan sesorang atau bahkan virus sehingga akan menghambat kinerja dari system komputasi ini. Didalam makalah ini akan memamparkan bagaimana sistem komputasi parallel ini pada  suatu PC Cluster sehingga menjadi suatu sistem komputasi yang aman sehingga dapat meningkatkan performa dari komputasi.

Implementasi untuk parallel komputasi ini telah dilakukan di lab dengan PC Clutster  dengan menggunakan 1 buah master node dan 7 buah slave node, dimana system yang digunakan adalah diskless dengan menggunakan switch hub 1Gbps sebagai konsentrator dan dengan menerapkan aspek keamanan.

Setelah ditemukannya teknik parallel processing, komputasi pun berkembang ke sebuah proses komputasi baru yaitu proses komputasi parallel.

3. Hubungan Antara Komputasi Modern Dengan Paralel Processing

Penggunaan Komputer untuk menyelesaikan suatu permasalahan dalam berbagai bidang sekarang ini banyak dilakukan karena lebih  cepat dibandingkan penyelesaian secara manual. Oleh karena hal tersebut, perlu adanya peningkatan proses komputasi yang dapat ditempuh dengan 2 cara, yaitu:

Peningkatan Kecepatan Hardware : peningkatan kecepatan prosesor komputer dengan menggunakan multiprosesor. Perubahan arsitektur komputer menjadi multiprosesor memang dapat mengerjakan banyak proses dalam 1 waktu, namun tidak dapat mempercapat kinerja proses. Hal ini dapat diatasi dengan peningkatan kecepatan software.

Peningkatan Kecepatan Software : mencari suatu algoritma untuk mempercepat kinerja proses. Algoritma tersebut tidaklah mudah tuk ditemukan, namun berkat adanya komputer multiprosesor, hal tersebut dapat dirancang dengan memparalelkan proses komputasinya.

Komputer multiprosesor masihlah memerlukan biaya yang cukup besar sehingga menyebabkan beberapa algoritma paralel sulit diimplementasikan. Untuk mengatasinya dirancanglah mesin paralel semu. Mesin paralel semu ini sebenarnya adalah jaringan komputer yang dikendalikan oleh sebuah perangkat lunak yang mampu mengatur pengalokasian proses-proses komputasi kepada processor-processor yang tersebar dalam  jaringan tersebut. Jadi kesimpulannya, dengan adanya paralel processing mempercepat waktu penyelesaian masalah komputasi karena proses dijalankan secara paralel dg beberapa processor/komputer dengan tujuan/algoritma yang sama. Banyaknya jumlah komputer/prosessor untuk paralel processing, proses komputasi menjadi lebih cepat.

# BioInformatika #

1. Jelaskan pengertian dan sejarah dari BioInformatika !

2. Jelaskan cabang-cabang disiplin ilmu  yang terkait dengan BioInformatika !

 Jawab #

1. Pengertian & Sejarah BioInformatika

Pengertian

Bioinformatika terdiri dari kata “bio” dan “informatika” yang merupakan gabungan antara ilmu biologi dan ilmu teknik informatika. Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya. Selain itu pengertian lain bioinformatika yaitu ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.

Bioinformatika adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematikastatistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur proteinmaupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.

Sejarah

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.

Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Bioinformatika pertamakali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmu komputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritma untuk analisis sekuens biologi telah dilakukan sejak tahun 1960an.

Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat (sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).

Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan jaringan internet juga mendukung berkembangnya bioinformatika. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan dalam mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Pangkalan Data sekuens biologi dapat berupa pangkalan data primer untuk menyimpan sekuens primer asam nukleat dan protein, pangkalan data sekunder untuk menyimpan motif sekuens protein, dan pangkalan data struktur untuk menyimpan data struktur protein dan asam nukleat.

Pangkalan data utama untuk sekuens asam nukleat saat ini adalahGenBank (Amerika Serikat), EMBL (the European Molecular Biology Laboratory, Eropa), dan DDBJ (DNA Data Bank of Japan, Jepang). Ketiga pangkalan data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing pangkalan data. Sumber utama data sekuens asam nukleat adalah submisi (pengumpulan) langsung dari peneliti individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam pangkalan data sekuens asam nukleat pada umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan segala sesuatu yang berkaitan dengan sekuens asam nukleat tersebut.

Selain asam nukleat, beberapa contoh pangkalan data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga pangkalan data tersebut telah digabungkan dalam UniProt, yang didanai terutama oleh Amerika Serikat. Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang pada umumnya berisi penjelasan mengenai fungsi protein tersebut.

Perangkat bioinformatika yang berkaitan erat dengan penggunaan pangkalan data sekuens Biologi ialah BLAST (Basic Local Alignment Search Tool). Penelusuran BLAST (BLAST search) pada pangkalan data sekuens memungkinkan ilmuwan untuk mencari sekuens baik asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing atau untuk memeriksa fungsi gen hasil sekuensing.Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.

PDB (Protein Data Bank, Bank Data Protein) ialah pangkalan data tunggal yang menyimpan model struktur tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-Xspektroskopi NMR, danmikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensiyang menggambarkan posisi atom-atom dalam protein atau pun asam nukleat.

2. Cabang-Cabang Disiplin Ilmu  Yang Terkait Dengan BioInformatika

Terdapat cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika. Terutama karena Bioinformatika itu sendiri merupakan suatu bidang interdisipliner. Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika. Di bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika.

– Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics.Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karenapenggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkanpenggunaan TI.

– Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena 
biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti 
contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipundikaitkan dengan masalah biologi.

– Medical Informatics 
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit”  yaitu informasi dari sistem-sistem superselular, tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.

– Cheminformatics 
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, danpendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat(Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini. Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obatobatan hingga sekarang –meskipun terlihat aneh. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus 
selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics. Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilitie.

– Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom denganmembandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

– Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripadacomputational biology dengan Bioinformatika. Mathematical biology juga menanganimasalah-masalah biologi, namun metode yang digunakan untuk menangani masalahtersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu “menyelesaikan” masalah apapun dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu. Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang  beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

– Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dariprotein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom. Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari Proteomics mendefiniskan kata “proteome” sebagai: “The PROTEin complement of the genOME”. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri”. Yaitu: “sebuah 
antarmuka antara biokimia protein dengan biologi molekul”. Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam sebuah tipe sel yang diberikan pada waktu tertentu apakah untuk mengukur berat molekul atau nilai-nilai isoelektrik protein-protein tersebut melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.

– Pharmacogenomics 
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi padaidentifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker). Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial”  tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi danGenetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

– Pharmacogenetics 
Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruhobat sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogeneticsadalah bagian dari pharmacogenomics yang menggunakan metodegenomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik,contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu 
administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatantersebut telah digunakan untuk “menghidupkan kembali” obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu. Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkanpeningkatan pelayanan.

Leave a comment »

BioInformatika

Bioinformatika terdiri dari kata “bio” dan “informatika” yang merupakan gabungan antara ilmu biologi dan ilmu teknik informatika. Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya. Selain itu pengertian lain bioinformatika yaitu ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.

Bioinformatika adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematikastatistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur proteinmaupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.

Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh teknologi informasi melalui perkembangan hardware dan soffware. Baik pihak pabrikan sofware dan harware maupun pihak ketiga dalam produksi perangkat lunak. Salah satu contohnya dapat dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan teknologi informasi sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun).

Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi.Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA.

Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982.

Sejarah

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.

Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Bioinformatika pertamakali dikemukakan pada pertengahan 1980an untuk mengacu kepada penerapan ilmu komputer dalam bidang biologi. Meskipun demikian, penerapan bidang-bidang dalam bioinformatika seperti pembuatan pangkalan data dan pengembangan algoritma untuk analisis sekuens biologi telah dilakukan sejak tahun 1960an.

Kemajuan teknik biologi molekuler dalam mengungkap sekuens biologi protein (sejak awal 1950an) dan asam nukleat (sejak 1960an) mengawali perkembangan pangkalan data dan teknik analisis sekuens biologi. Pangkalan data sekuens protein mulai dikembangkan pada tahun 1960an di Amerika Serikat, sementara pangkalan data sekuens DNA dikembangkan pada akhir 1970an di Amerika Serikat dan Jerman pada Laboratorium Biologi Molekuler Eropa (European Molecular Biology Laboratory).

Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang dapat diungkapkan pada 1980an dan 1990an. Hal ini menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, yang meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Perkembangan jaringan internet juga mendukung berkembangnya bioinformatika. Pangkalan data bioinformatika yang terhubungkan melalui internet memudahkan ilmuwan dalam mengumpulkan hasil sekuensing ke dalam pangkalan data tersebut serta memperoleh sekuens biologi sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan dalam mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

Pangkalan Data sekuens biologi dapat berupa pangkalan data primer untuk menyimpan sekuens primer asam nukleat dan protein, pangkalan data sekunder untuk menyimpan motif sekuens protein, dan pangkalan data struktur untuk menyimpan data struktur protein dan asam nukleat.

Pangkalan data utama untuk sekuens asam nukleat saat ini adalahGenBank (Amerika Serikat), EMBL (the European Molecular Biology Laboratory, Eropa), dan DDBJ (DNA Data Bank of Japan, Jepang). Ketiga pangkalan data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing pangkalan data. Sumber utama data sekuens asam nukleat adalah submisi (pengumpulan) langsung dari peneliti individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam pangkalan data sekuens asam nukleat pada umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan segala sesuatu yang berkaitan dengan sekuens asam nukleat tersebut.

Selain asam nukleat, beberapa contoh pangkalan data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga pangkalan data tersebut telah digabungkan dalam UniProt, yang didanai terutama oleh Amerika Serikat. Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang pada umumnya berisi penjelasan mengenai fungsi protein tersebut.

Perangkat bioinformatika yang berkaitan erat dengan penggunaan pangkalan data sekuens Biologi ialah BLAST (Basic Local Alignment Search Tool). Penelusuran BLAST (BLAST search) pada pangkalan data sekuens memungkinkan ilmuwan untuk mencari sekuens baik asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing atau untuk memeriksa fungsi gen hasil sekuensing.Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.

PDB (Protein Data Bank, Bank Data Protein) ialah pangkalan data tunggal yang menyimpan model struktur tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-Xspektroskopi NMR, danmikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensiyang menggambarkan posisi atom-atom dalam protein atau pun asam nukleat.

Terdapat cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika. Terutama karena Bioinformatika itu sendiri merupakan suatu bidang interdisipliner. Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika. Di bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika.

– Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

– Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena
biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti
contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

– Medical Informatics 
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit”  yaitu informasi dari sistem-sistem superselular, tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.

– Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini. Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obatobatan hingga sekarang –meskipun terlihat aneh. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus
selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics. Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilitie.

– Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

– Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu “menyelesaikan” masalah apapun dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu. Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang  beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

– Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom. Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari Proteomics mendefiniskan kata “proteome” sebagai: “The PROTEin complement of the genOME”. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri”. Yaitu: “sebuah
antarmuka antara biokimia protein dengan biologi molekul”. Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam sebuah tipe sel yang diberikan pada waktu tertentu apakah untuk mengukur berat molekul atau nilai-nilai isoelektrik protein-protein tersebut melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.

– Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker). Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial”  tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

– Pharmacogenetics
Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogeneticsadalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu
administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatan tersebut telah digunakan untuk “menghidupkan kembali” obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu. Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan


Sumber :
http://id.wikipedia.org/wiki/Bioinformatika
http://bioinformatika-q.blogspot.com/ 

http://kambing.ui.ac.id/bebas/v06/Kuliah/SistemOperasi/2003/50/Bioinformatika.pdf 

Leave a comment »

Kinerja Komputasi dengan Paralel Processing

Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.

Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.
Komputasi paralel membutuhkan:
· algoritma
· bahasa pemrograman
· compiler

Paralel Processing Komputasi

Paralel processing komputasi adalah proses atau pekerjaan komputasi di komputer dengan memakai suatu bahasa pemrograman yang dijalankan secara paralel pada saat bersamaan. Secara umum komputasi paralel diperlukan untuk meningkatkan kecepatan komputasi bila dibandingkan dengan pemakaian komputasi pada komputer tunggal. Penggunaan komputasi parallel prosessing merupakan pilihan yang cukup handal untuk saat ini untuk pengolahan data yang besar dan banyak. Yang mempunyai tujuan untuk dapat mempercepat dalam hal mengatasi suatu permasalahan. Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing.

Terdapat beberapa konfigurasi yang harus dilakukan dalam penggunaan parallel processing yaitu :

  • Perangkat keras komputer diharuskan melakukan penyetinggan dengan sistem shared memory.
  • Melakukan penyetinggan processor yang memiliki memory masing-masing.
  • Melakukan beberapa / banyak processor yang terhubung ke dalam suatu jaringan untuk melakukan pekerjaan yang sama dengan cara simultan yaitu bersama-sama.

Aspek keamanan merupakan suatu aspek penting dalam sistem parallel prosessing komputasi ini, karena didalam sistem akan banyak berkaitan dengan akses data, hak pengguna, keamanan data, keamanan jaringan terhadap peyerangan sesorang atau bahkan virus sehingga akan menghambat kinerja dari system komputasi ini. Didalam makalah ini akan memamparkan bagaimana sistem komputasi parallel ini pada  suatu PC Cluster sehingga menjadi suatu sistem komputasi yang aman sehingga dapat meningkatkan performa dari komputasi.

Implementasi untuk parallel komputasi ini telah dilakukan di lab dengan PC Clutster  dengan menggunakan 1 buah master node dan 7 buah slave node, dimana system yang digunakan adalah diskless dengan menggunakan switch hub 1Gbps sebagai konsentrator dan dengan menerapkan aspek keamanan.

Setelah ditemukannya teknik parallel processing, komputasi pun berkembang ke sebuah proses komputasi baru yaitu proses komputasi parallel.

Parallel Komputasi

Parallel komputasi adalah melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan. Atau arti dalam kata lain adalah sebagai sebuah proses untuk menyelesaikan suatu permasalahan yang memerlukan infrastuktur mesin paralel yang terdiri dari banyak komputer dengan pemrosesan secara parallel dan dihubungkan melalui sebuah jaringan. Dalam hal pemrosesan komputasi yaitu sesuai dengan tujuan parallel processing maka dapat dipastikan bahwa parallel processing merupakan salah satu upaya untuk mempercepat proses komputasi dalam memecahkan suatu permasalahan dengan cara membagai-bagi permasalahan menjadi bagian yang lebih kecil. Untuk proses pembagian proses komputasi tersebut dilakukan oleh suatu software yang betugas untuk mengatur komputasi dalam hal makalah ini akan digunakanMessage Parsing Interface (MPI).

Berikut ini adalah gambar perbedaan antara komputasi tunggal dengan parallel komputasi :

a.         Komputasi Tunggal/serial

b.         Komputasi Parallel

 

Sumber :
http://www.scribd.com/doc/40938360/Makalah-Arkom-Paralel-Processing

Leave a comment »

Komputasi Modern

Konsep dasar arsitektur komputer modern adalah konsep sebuah sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory. Konsep ini pertama kali digagasi oleh John Von Neumann. Beliau di lahirkan di Budapest, ibukota Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Karya – karya yang dihasilkan adalah karya dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer. Beliau juga merupakan salah seorang ilmuwan yang sangat berpengaruh dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kepiawaian John Von Neumann teletak pada bidang teori game yang melahirkan konsep automata, teknologi bom atom dan komputasi modern yang kemudian melahirkan komputer. Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern. Von Neumann juga ahli dalam bidang komputasi. Von Neumann menjadi seorang konsultan pada pengembangan komputer ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah seperangkat komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Komputasi sebenarnya telah dilakukan manusia sejak berabad-abad yang lalu. Komputasi berawal dari pehitungan angka. Hal tersebut dilihat dari manusia yang telah dapat menghitung, menghitung berbagai hal. Zaman dahulu, manusia telah bisa melakukan perhitungan sederhana untuk sisitem barter barang. Sistem kalender dan rasi bintang bahkan telah dilakukan manusia sejak zaman romawi. Manusia telah memilki akal untuk melakukan perhitungan-perhitungan tersebut. Namun, dikarenakan setiap manusia mempunyai keterbatasan, tak semua perhitungan bisa dilakukan otak manusia. Apalagi jika perhitungan tersebut memiliki banyak angka. Oleh sebab itu, manusia membuat suatu alat perhitungan yang bisa membantu pekerjaannya.

Pengertian Komputasi Modern

Komputasi modern terdiri dari dua kata yaitu komputasi dan modern. Komputasi dapat diartikan sebagai cara untuk menemukan pemecahan permasalahan dari data input dengan suatu algoritma. Komputasi merupakan subbagian dari matematika. Selama ribuan tahun, perhitungan dan komputasi menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental dan kadang-kadang menggunakan tabel. disebut modern karena menggunakan alat canggih saat menyelesaian masalah. Maka dapat di simpulkan Komputasi modern adalah perhitungan yang menggunakan computer canggih dimana pada computer tersebut tersimpan sejumlah algoritma untuk menyelesaikan masalah perhitungan secara efektif dan efisien. Komputasi modern digunakan untuk memecahkan masalah antara lain untuk menghitung:

  • Akurasi (bit, floating point)
  • Kecepatan (dalam satuanHz)
  • Problem volume besar (paralel)
  • Modeling (NN dan GA)
  • Kompleksitas (menggunakan Teori Bog O)

Secara umum ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.
Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.

Model Komputasi

Komputasi memiliki 3 model, yaitu

  1. Mesin Mealy
  2. Mesin Moore
  3. Petri net

Karakteristik Komputasi Modern

Karakteristik komputasi modern ada 3 macam, yaitu :

  1. Komputer-komputer penyedia sumber daya bersifat heterogenous karena terdiri dari berbagai jenis perangkat keras, sistem operasi, serta aplikasi yang terpasang.
  2. Komputer-komputer terhubung ke jaringan yang luas dengan kapasitas bandwidth yang beragam.
  3. Komputer maupun jaringan tidak terdedikasi, bisa hidup atau mati sewaktu-waktu tanpa jadwal yang jelas.

Jenis-Jenis Komputasi Modern

Jenis-jenis komputasi modern ada 3 macam, yaitu :

1. Mobile Computing atau Komputasi Bergerak

Mobile computing (komputasi bergerak) merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel serta mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel. Berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan  perubahan dari sisi manusia maupun alat. Contoh dari mobile computing adalah GPS, smart phone, dan sebagainya.

2. Grid Computing

Komputasi grid memanfaatkan kekuatan pengolahan idle berbagai unit komputer, dan menggunakan kekuatan proses untuk menghitung satu pekerjaan. Pekerjaan itu sendiri dikontrol oleh satu komputer utama, dan dipecah menjadi beberapa tugas yang dapat dilaksanakan secara bersamaan pada komputer yang berbeda. Tugas-tugas ini tidak perlu saling eksklusif, meskipun itu adalah skenario yang ideal. Sebagai tugas lengkap pada berbagai unit komputasi, hasil dikirim kembali ke unit pengendali, yang kemudian collates itu membentuk keluaran kohesif. omputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar. Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :

  • Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
  • Sistem menggunakan standard dan protocol yang terbuka.
  • Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.

Keuntungan dari komputasi grid adalah dua kali lipat: pertama, kekuatan pemrosesan yang tidak digunakan secara efektif digunakan, memaksimalkan sumber daya yang tersedia dan, kedua, waktu yang dibutuhkan untuk menyelesaikan pekerjaan besar berkurang secara signifikan.

Idealnya kode sumber harus direstrukturisasi untuk membuat tugas-tugas yang saling eksklusif adalah sebagai mungkin. Itu tidak berarti bahwa mereka tidak bisa saling bergantung, tetapi pesan yang dikirim antara tugas-tugas meningkatkan faktor waktu. Satu pertimbangan penting saat membuat pekerjaan komputasi grid adalah bahwa apakah kode dijalankan serial atau paralel tugas, hasil dari keduanya harus selalu sama di setiap situasi.

3. Cloud Computing atau Komputasi Awan

Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet. Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Cloud computing adalah perluasan dari konsep pemrograman berorientasi objek abstraksi. Abstraksi, sebagaimana dijelaskan sebelumnya, menghapus rincian kerja yang kompleks dari visibilitas. Semua yang terlihat adalah sebuah antarmuka, yang menerima masukan dan memberikan output. Bagaimana output ini dihitung benar-benar tersembunyi.

Perbedaan komputasi mobile, komputasi grid dan komputasi cloud :

  • Komputasi mobile menggunakan teknologi komputer yang bekerja seperti handphone, sedangkan komputasi grid dan cloud menggunakan komputer.
  • Biaya untuk tenaga komputasi mobile lebih mahal dibandingkan dengan komputasi grid dan cloud.
  • Komputasi mobile tidak membutuhkan tempat dan mudah dibawa kemana-mana, sedangkan grid dan cloud membutuhkan tempat yang khusus.
  • Untuk komputasi mobile proses tergantung si pengguna, komputasi grid proses tergantung pengguna mendapatkan server atau tidak, dan komputasi cloud prosesnya membutuhkan jaringan internet sebagai penghubungnya.

Persamaan komputasi mobile, komputasi grid dan komputasi cloud :

  • Ketiganya merupakan metode untuk melakukan komputasi, pemecahan masalah, dan pencarian solusi.
  • Ketiganya memerlukan alat proses data yang modern seperti komputer, laptop atau telepon genggam untuk menjalankannya.

Dampak adanya komputasi modern

Dampak dari adanya komputasi modern ialah semakin mempermudah manusia dalam menyelesaikan masalah-masalah perhitungan yang sangat kompleks dengan menggunakan komputer dan juga merupakan sebuah pengembangan dari sistem yang ada yang terus di perbarui hingga sekarang.

Sumber :

http://id.wikipedia.org/wiki/Komputasi

http://www.smartssolution.info/komputasi-modern.html

Leave a comment »

Bisnis Dalam Bidang TI

Dalam dunia bisnis Teknologi Informasi dan Komunikasi dimanfaatkan untuk perdagangan secara elektronik atau dikenal sebagai E-Commerce. E-Commerce adalah perdagangan menggunakan jaringan komunikasi internet.

Pekerjaan di bidang TI terbagi dalam 4 kelompok :

Kelompok pertama, adalah mereka yang bergelut di dunia perangkat lunak (software)

Yang termasuk kelompok ini adalah :

  • Sistem analis, merupakan orang yang bertugas menganalisa sistem yang akan diimplementasikan, mulai dari menganalisa sistem yang ada, tentang kelebihan dan kekurangannya, sampai studi kelayakan dan desain sistem yang akan dikembangkan.
  • Programmer, merupakan orang yang bertugas mengimplementasikan rancangan sistem analis yaitu membuat program (baik aplikasi maupun sistem operasi) sesuai sistem yang dianalisa sebelumnya.
  • Web designer adalah orang yang melakukan kegiatan perecanaan, termasuk studi kelayakan, analisis dan desain terhadap suatu proyek pembuatan aplikasi berbasis web.
  • Web programmer orang yang bertugas mengimplementasikan rancangan web designer yaitu membuat program berbasis web sesuai desain yang telah dirancang sebelumnya.

Kelompok kedua, adalah mereka yang bergelut di bidang perangkat keras (hardware).

Pada lingkungan kelompok ini terdapat pekerjaan-pekerjaan seperti :

  • Technical enginer, sering juga disebut sebagai teknisi yaitu orang yang berkecimpung dalam bidang teknik baik mengenai pemeliharaan maupun perbaikan perangkat sistem komputer
  • Networking Engineer, adalah orang yang berkecimpung dalam bidang teknis jaringan komputer dari maintenance sampai pada troubleshooting-nya

Kelompok ketiga, adalah mereka yang berkecimpung dalam operasional sistem informasi.

Yang termasuk dalam kelompok ini adalah :

  • EDP Operator, adalah orang yang bertugas untuk mengoperasikan program-program yang berhubungan dengan electronic data processing dalam lingkungan sebuah perusahaan atau organisasi lainnya.
  • System Administrator, merupakan orang yang bertugas melakukan administrasi terhadap sistem, melakukan pemeliharaan sistem, memiliki kewenangan mengatur hak akses terhadap sistem, serta hal-hal lain yang berhubungan dengan pengaturan operasional sebuah sistem.
  • MIS Director, merupakan orang yang memiliki wewenang paling tinggi terhadap sebuah sistem informasi, melakukan manajemen terhadap sistem tersebut secara keseluruhan baik hardware, software maupun sumber daya manusianya.

Kelompok yang keempat, adalah mereka yang berkecimpung dipengembangan bisnis Teknologi Informasi

Pada bagian ini, pekerjaan diidentifikasikan oleh pengelompokan kerja di berbagai sektor di industri Teknologi Informasi.

Teknologi Informasi dan Komunikasi Bagi Dunia Bisnis

Pemanfaatan TIK di Sektor Bisnis

Bagi dunia bisnis, jejaring telekomunikasi awalnya digunakan seperti halnya jejaring listrik, distribusi air, dan jejaring utilitas lain. Ini merupakan sumber yang penting, tetapi dulu perusahaan memiliki pengaruh yang kecil. Perusahaan-perusahaan memiliki pilihan yang terbatas atas layanan yang diperoleh dari penyediaan layanan yang dikelola secara monopoli. Hari ini, para pengguna korporat meletakkan bersama keseluruhan jejaring di bawah kontrol mereka, memotong-pintas jejaring publik sebagian atau seenuhnya. Deregulation dan teknologi digital baru telah mengizinkan perusahaan untuk secara sadar merancang dan mengoperasikan jejaring telekomunikasi internal dan privat untuk meningkatkan posisi kompetitif mereka. Apa yang dulunya merupakan biaya untuk menjalankan bisnis, sekarang menjadi sumber keuntungan kompetitif.

Era Globalisasi

Perkembangan teknologi informasi telah berkembang luar biasa hebatnya baik dari sisi perangkat keras, perangkat lunak, atau sumber daya manusia yang mendayagunakannya. Saat ini kehidupan manusia mulai bergeser ke kehidupan komputasi persasif, suatu kehidupan yang meletakkan teknologi informasi sebagai bagian dari kehidupan manusia kapan dan dimana saja. Hal ini dapat diilihat dari prilaku manusia yang sudah mulai terbiasa dengan komputer, sudah mulai terbiasa dengan internet, dan sudah mulai merasakan bahwa sekumpulan kebutuhannya dapat dibantu oleh teknologi informasi.

Komunikasi Bisnis dengan Peranan Teknologi Informasi dan Komunikasi

Komunikasi adalah suatu proses penyampaian dan penerimaan pesan atau informasi diantara dua orang atau lebih dengan harapan terjadinya pengaruh yang positif atau menimbulkan efek tertentu yang diharapkan. Komunikasi adalah persepsi dan apresiasi.
Persaingan yang keras dalam dunia bisnis tentunya sangat membutuhkan suatu perusahaan yang dapat menangani akan hal  itu diberbagai situasi yang menantang. Semua bisnis tentunya juga membutuhkan semua informasi yang sangat aktual, cepat dan dapat dipercaya, yang mana bisa semua permasalahan tersebut hanya bisa diselesaikan melalui Teknologi Informasi dan Komunikasi ( ICT ).

Pergerakan bisnis yang semakin cepat menuntut komunikasi (suara, data dan informasi) yang lebih lebih cepat guna mempertahankan pelanggan, pemasok, dan, bahkan, dalam menghadapi persaingan.

Telepon Sebagai media Komunikasi Bisnis

Pada awalnya, komunikasi dalam dunia bisnis dilakukan dengan menggunakan suatu perangkat komunikasi yang disebut telepon, dimana dengan alat ini para pelaku bisnis dapat menyampaikan informasi dan berkomunikasi dengan pihak lain dalam rangka menjalankan bisnisnya.

Internet sebagai salah satu media Komunikasi Bisnis

Pengertian Internet

Internet dapat diartikan sebagai jaringan komputer luas dan besar yang mendunia, yaitu menghubungkan pemakai komputer dari suatu negara ke negara lain di seluruh dunia, dimana di dalamnya terdapat berbagai sumber daya informasi dari mulai yang statis hingga yang dinamis dan interaktif.

Manfaat internet

Secara umum ada banyak manfaat yang dapat diperoleh apabila seseorang mempunyai akses ke internet .Berikut ini sebagian dari apa yang tersedia di internet:

1. Informasi untuk kehidupan pribadi :kesehatan, rekreasi, hobby, pengembangan pribadi, rohani, sosial.

2. Informasi untuk kehidupan profesional/pekerja :sains, teknologi, perdagangan, saham, komoditas, berita bisnis, asosiasi profesi, asosiasi bisnis, berbagai forum komunikasi.

Satu hal yang paling menarik ialah keanggotaan internet tidak mengenal batas negara, ras, kelas ekonomi, ideologi atau faktor faktor lain yang biasanya dapat menghambat pertukaran pikiran. Internet adalah suatu komunitas dunia yang sifatnya sangat demokratis serta memiliki kode etik yang dihormati segenap anggotanya. Manfaat internet terutama diperoleh melalui kerjasama antar pribadi atau kelompok tanpa mengenal batas jarak dan waktu.
Untuk lebih meningkatkan kualitas sumber daya manusia di Indonesia, sudah waktunya para profesional Indonesia memanfaatkan jaringan internet dan menjadi bagian dari masyarakat informasi dunia.

Situs web perusahaan misalnya, menyediakan berbagai informasi. Banyak perusahaan dewasa ini menggunakan situs web unutk mengiklankan produk, menerima pesanan produk, meminta umpan balik pelanggan dan menerima karyawan. Mereka juga menggunakan internet untUk berkomunikasi dengan kelompok terpilih (pilihan).

Salah satu penggunaan internet sebagai media komunikasi bisnis adalah dengan penggunaan email, karena email adalah sarana internet yang bisa menyajikan tulisan.

E-Commerce dalam Komunikasi Bisnis

Perdagangan sebenarnya merupakan kegiatan yang dilakukan manusia sejak awal peradabannya. Sejalan dengan perkembangan manusia, cara dan sarana yang digunakan untuk berdagang senantiasa berubah. Bentuk perdagangan terbaru yang kian memudahkan penggunaannya kini adalah e-commerce. Secara umum, e-commerce dapat didefinisikan sebagai segala bentuk transaksi perdagangan atau perniagaan barang dan jasa dengan menggunakan media elektronik.Di dalam e-commerce, para pihak yang melakukan kegiatan perdagangan / perniagaan hanya berhubungan melalui suatu jaringan publik (public network) yang dalam perkembangan terakhir menggunakan media internet.

Sistem E-commerce dapat diklasifikasikan kedalam tiga tipe aplikasi, yaitu :
a. Electronic Markets (EMs), yaitu sebuah sarana yang menggunakan teknologi informasi dan komunikasi untuk melakukan atau menyajikan penawaran dalam sebuah segmen pasar, sehingga pembeli dapat membandingkan berbagai macam harga yang ditawarkan. Dalam pengertian lain, EMs adalah sebuah sistem informasi antar organisasi yang menyediakan fasilitas-fasilitas bagi para penjual dan pembeli untuk bertukar informasi tentang harga dan produk yang ditawarkan.

b. Elektronic Data Interchange (EDI), adalah sarana untuk mengefisienkan pertukaran data transaksi-transaksi regular yang berulang dalam jumlah besar antara organisasi-organisasi komersial. Secara formal, EDI didefinisikan oleh International Data Exchabge Association (IDEA) sebagai “transfer data terstruktur dengan format standard yang telah disepakati, yang dilakukan dari satu sistem komputer ke sistem komputer lain dengan menggunakan media elektronik”. EDI sangat luas penggunaaanya, biasanya digunakan oleh kelompok retail besar, ketika melakukan transaksi bisnis dengan para supplier mereka. EDI memiliki standarisasi pengkodean transaksi perdagangan, sehingga organisasi komersial tersebut dapat berkomunikasi secara langsung dari satu sistem komputer ke sistem komputer yang lain, tanpa memerlukan hardcopy atau faktur, sehingga terhindar dari penundaan, kesalahan yang tidak disengaja dalam penanganan berkas dan intervensi dari manusia.

c. Internet Commerce, adalah penggunaan internet yang berbasis teknologi informasi dan komunikasi untuk aktivitas perdagangan. Kegiatan komersial ini, seperti iklan dalam penjualan produk dan jasa. Transaksi yang dapat dilakukan di internet, antara lain pemesanan/pembelian barang dimana barang akan dikirimkan melalui pos atau sarana lain setelah uang ditransfer ke rekening penjual.

dari berbagai sumber…

 

Leave a comment »

Pengaruh & Peranan TI terhadap Perkembangan Bisnis Online di Indonesia

Teknologi informasi (TI) turut berkembang sejalan dengan perkembangan peradaban manusia. Perkembangan teknologi informasi meliputi perkembangan infrastruktur TI, seperti hardware, software, teknologi penyimpanan data dan teknologi komunikasi.
Teknologi Informasi (TI) telah berkembang pesat. Begitu cepatnya sehingga dapat dikatakan telah menjadi “revolusi teknologi informasi” yang mampu mengubah wajah dunia. Dewasa ini terdapat dua jenis teknologi yang terasa mewarnai kehidupan bisnis, yaitu TI dan perancangan kembali rekayasa ulang (business process reengineerin, BBP). Termonologi dalam TI menyangkut penggabungan teknologi computer, telekomunikasi dan otomasi kantor.

Dampak Positif Penggunaan Teknologi Informasi
Seiring dengan berkembang pesatnya ilmu pengetahuan dan teknologi, Para pelaku IT mulai gencar memanfaatkan kemajuan tersebut. Khususnya dalam bidang Teknologi Informasi, para pelaku IT dapat memperoleh kemudahan dalam setiap urusannya.
Teknologi Informasi dapat didefinisikan sebagai suatu teknologi yang berfungsi untuk menghasilkan, menyimpan, mengolah, dan menyebarkan informasi tersebut dengan berbagai bentuk media dan format (image, suara, text, motion pictures, dsb). Dampak Teknologi Informasi tersebut terbagi atas 2, yaitu dampak positif dan dampak negatif.
Dilihat dari segi dampak positif, misalkan di bidang jasa pelayanan kesehatan. Institusi kesehatan menggunakan teknologi informasi untuk memberikan pelayanan secara terpadu dari pendaftaran pasien sampai kepada system penagihan yang bisa dilihat melalui internet. Contoh lain misalnya di bidang hiburan. Sekarang banyak bermunculan polling atau layanan masyarakat dalam bentuk SMS (Short Message Service), termasuk juga untuk sistem perbankan.
Setelah dirasakan bahwa teknologi Informasi dapat menggantikan cara konvensional yang memberikan benefit, maka orang mulai melihat kelebihan lainnnya, misalnya menggantikan sarana pengiriman surat dengan surat eletronik (e-mail), pencarian data melalui search engine, chatting, mendengarkan musik, dan sebagainya dimana pada tahapan ini orang sudah mulai menginvestasikan kepada perangkat komputer. Nah, dari manfaat yang didapatkan, teknologi informasi mulai digunakan dan diterapkan untuk membantu operasional dalam proses bisnis. Misalnya perusahaan dalam memberikan pelayanan kepada pelanggan dengan menyediakan informasi jasa dan produk yang ditawarkan tanpa dibatasi waktu dan ruang.
Orang sudah mau investasi dalam menyediakan perangkat keras dan lunak untuk mengelola data dan menghasilkan laporan secara lebih akurat dan menyeluruh. Dari level top management proses pengolahan data menjadi informasi dan akhirnya menjadi pengetahuan (knowledge) digunakan sebagai proses untuk mengambil keputusan sehingga keputusan yang diambil akan terstruktur dan terarah (Executive Decision Making). Tahapan terakhir dimana orang sudah berani menginvestasi secara optimal untuk perangkat keras, perangkat lunak, dan sumber daya manusia untuk mengoperasikan bisnisnya. Pemanfaatkan teknologi infomasi sudah secara menyeluruh dan terpadu untuk menghasilkan keuntungan bagi perusahaan dan meningkatkan effisiensi dan effektivitas perusahaan.
Dampak lainnya:
  • Media yang dapat menghemat biaya
Pemanfaatan teknologi informasi dimulai pada saat teknologi informasi dianggap sebagai media yang dapat menghemat biaya dibandingkan dengan metode konvensional, misalkan saja pemakaian mesin ketik, kertas, penghapus, tip-ex, proses editing, dsb yang cenderung tidak efisien. Sekarang dengan bantuan komputer kita bisa melihat hasil ketikan di layar monitor sebelum dicetak (paperless). Lebih efisien dalam waktu dan tempat penyimpanan file. Makanya dahulu banyak kursus mengetik, sekarang sudah jarang kita temui kursus mengetik apalagi di kota-kota besar.
  • Internet sebagai media komunikasi
Merupakan fungsi internet yang paling banyak digunakan dimana setiap pengguna internet dapat berkomunikasi dengan pengguna lainnya dari seluruh dunia. Media pertukaran data, dengan menggunakan email, newsgroup, ftp dan www (world wide web) / jaringan situs-situs web para pengguna internet di seluruh dunia dapat saling berkomunikasi dan bertukar informasi dengan cepat dan murah.
  • Pendidikan
Menjadi media pendidikan, karena adanya situs-situs yang berhubungan pendidikan. Sehingga mendorong seseorang untuk kembali belajar, dan menambah wawasan yang ada.
  • Media untuk mencari informasi atau data
Perkembangan internet yang pesat, menjadikan www sebagai salah satu sumber informasi yang penting dan akurat. Kemudahan memperoleh informasi melalui internet membuat para pelaku IT tahu apa saja yang terjadi. Bisa digunakan sebagai lahan informasi untuk bidang pendidikan, kebudayaan, dan lain-lain.
  • Perdagangan
Kemudahan bertransaksi dan berbisnis dalam bidang perdagangan sehingga tidak perlu pergi menuju ke tempat penawaran/penjualan. Seperti, pengiriman barang melalui paket.
  • Agama
Adanya situs-situs rohani,dapat menambah iman serta pengetahuan manusia tentang agama.

Dampak Negatif Penggunaan Teknologi Informasi
Pernahkah kita sadari di lain sisi, kita mendengar dampak negatif dari pemanfaatan teknologi? Salah satu penelitian yang di lakukan di Universitas Tohoku Jepang menunjukan bahwa jika anak-anak dijejali aneka permainan komputer, maka lama-kelamaan akan terjadi kerusakan di sebagian otaknya (masih mau main game berlama-lama lagi?). Atau seperti kejadian di Thailand di mana seorang gadis remaja gantung diri karena frustasi tidak dapat menyelesaikan permaian bomber man. Di bidang kriminalitas, walaupun belum ada penelitian yang kongkret tapi dipercaya bahwa ada korelasi positif antara bermain permainan computer dengan tingkat kejahatan di kalangan anak muda, khususnya permaian komputer yang banyak memuat unsur kekerasan dan pembunuhan. Di bidang perbankan, lebih mengkhawatirkan lagi penggunaan kartu kredit illegal (carding).
Belum lagi perseteruan antara pembuat virus dan antivirus yang tidak pernah berhenti sepanjang masa.

dari berbagai sumber…

Leave a comment »

Dampak Euphoria Piala AFF terhadap Perekonomian Indonesia dalam Bidang Informatika

Kejuaraan piala AFF sudah lewat namun animo masyarakat untuk melihat sepakbola indonesia masih tetap semangat untuk mendukung timnas Indonesia.Tak bisa dipungkiri lagi bahwa masyarakat Indonesia saat ini sedang mengalami euphoria terhadap timnas karena telah berhasil masuk ke babak final, meskipun akhirnya timnas hanya memperoleh peringkat runner-up setelah tumbang dari timnas Malaysia. Menjadi runner up pada ajang piala AFF mungkin merupakan awal yang baik bagi persepakbolaan indonesia. Tidak bisa dipungkiri bahwa dengan adanya ajang tersebut masyarakat indonesia makin mencintai timnas Indonesia.
Dengan minat yang sangat besar, para pendukung Timnas rela berdesak-desakan hanya sekedar untuk mendapatkan tiket nonton pertandingan Indonesia melawan negara-negara yang mengikuti pertandingan piala AFF 2010.Dari kejuaraan AFF tersebut memiliki dampak diluar lapangan sepakbola seperti dampak perekonomian indonesia seperti :
  • Dengan adanya ajang tersebut banyak orang berbondong-bondong untuk membeli pernak-pernik yang berkaitan dengan timnas. Kejadian ini menaikkan omset para pedagang-pedagang kaos maupun penjual makanan yang berjualan di sekitar GBK. Dapat dilihat dari meningkatnya penjualanan segala hal yang berhubungan dengan Sepak Bola, sehingga menaikkan omset bagi para pedagang Kaos bola, Bola, Topi, dan lain-lain
  • Dalam bidang Informatika dampak perekonomian indonesia terlihat dengan penjualan-penjualan secara online seperti penjualan tiket.
  • Perekonomian di Indonesia juga meningkat, dilihat dari meningkatnya permintaan kamar untuk para pendatang menginap di hotel-hotel. Banyak masyarakat dari luar kota yang menginap di hotel Sultan Jakarta. Kejadian ini menaikkan omset Hotel Sultan Jakarta. Tarif per malam yang paling murah saja 750 ribu dan yang paling mahal 15 juta.
  • Masyarakat yang berada diluar negeri yang ingin mendukung negaranya secara langsung di GBK. Berarti banyak WNA dan WNI yang berada diluar negeri yang membeli tiket pesawat, baik membeli sacara langsung di bandara atau lewat online.
  • Dengan adanya Piala AFF, para pendukung negara masing-masing akan mencari informasi tentang jadwal pertandingan dengan cara online pula.

dari berbagai sumber…

Leave a comment »

Manfaat E-commerce bagi Pengguna Bisnis Online

Electronic Commerce (E-Commerce) didefinisikan sebagai proses pembelian dan penjualan produk, jasa dan informasi yang dilakukan secara elektronik dengan memanfaatkan jaringan komputer. Salah satu jaringan yang digunakan adalah internet.

Sementara itu Kalakota dan Whinston mendefinisikan E-Commerce dari beberapa perspektif, yaitu :
1) dari perspektif komunikasi, E-Commerce adalah pengiriman informasi, produk/jasa, atau pembayaran melalui jaringan telepon, atau jalur komunikasi lainnya;
2) dari perspektif proses bisnis, E-Commerce adalah aplikasi teknologi menuju otomatisasi transaksi bisnis dan work flow;
3) dari perspektif pelayanan, E-Commerce adalah alat yang digunakan untuk mengurangi biaya dalam pemesanan dan pengiriman barang; dan
4) dari perspektif online, E-Commerce menyediakan kemampuan untuk menjual dan membeli produk serta informasi melalui internet dan jaringan jasa online lainnya.

Secara umumnya, E-COMMERCE merupakan aktivitas perdagangan melalui media internet. Dengan adanya layanan ini banyak manfaat yang dapat memudahkan dalam proses jual beli atau jasa yang diberikan antara lain manfaat bagi pengguna bisnis seperti :
  • Perusahaan-perusahaan dapat menjangkau pelanggan diseluruh dunia. Oleh karena itu dengan memperluas bisnis mereka, sama saja dengan meningkatkan keuntungan.
  • E-COMMERCE menawarkan pengurangan sejumlah biaya tambahan. Sebuah perusahaan yang melakukan bisnis diinternet akan mengurangi biaya tambahan karena biaya tersebut tidak digunakan untuk gedung dan pelayanan pelanggan (costumer service), jika dibangdingkan dengan jenis bisnis tradisional.
  • Meningkatkan pendapatan dengan menggunakan online channel yang biayanya lebih murah
  • Mengurangi keterlambatan dengan menggunakan transfer elektronik/pembayaran yang tepat waktu dan dapat langsung dicek.
  • Mempercepat pelayanan ke pelanggan, dan pelayanan lebih responsif.

Pengguna e-commerce itu dalam bidang bisnis, bukan hanya penjual saja, tetapi juga si konsumen atau pembelinya. Karena e-commerce lebih banyak digunakan istilahnya jual-beli secara online. Manfaat e-commerce bagi pengguna

Secara ringkas keuntungan e-commerce tersebut adalah sebagai berikut :
• Bagi Konsumen : harga lebih murah, belanja cukup pada satu tempat.
• Bagi Pengelola bisnis : efisiensi, tanpa kesalahan, tepat waktu
• Bagi Manajemen : peningkatan pendapatan, loyalitas pelanggan.

Keuntungan e-commerce bagi bisnis:
  • Pasar internasional
Dengan penerapan e-commerce sebuah perusahaan dapat memiliki sebuah pasar internasional. Bisnis dapat dijalankan tanpa harus terbentur pada batas negara dengan adanya teknologi digital. Pihak perusahaan dapat bertemu dengan partner dan kliennya dari seluruh penjuru dunia. Hal ini menciptakan sebuah lembaga multinasional virtual.
  • Penghematan biaya operasional
Biaya operasional dapat dihemat. Biaya untuk membuat, memproses, mendistribusikan, menyimpan, dan memperbaiki kembali informasi juga dapat ditekan.
Mengurangi penggunaan paper/kertas di berbagai aktifitas mulai dari tahapan desain, produksi, pengepakan, pengiriman, distribusi hingga marketing.
  • Kustomisasi masal
E-commerce telah merevolusi cara konsumen dalam membeli barang dan jasa. Produk barang dan jasa dapat dimodifikasi sesuai dengan keingingan konumen. Contohnya, di masa lalu saat perusahaan Ford mulai memasarkan mobil produksinya, para pembeli hanya dapat membeli motor yang berwarna hitam karena yang dibuat memang hanya warna tersebut. Namun sekarang pembeli dapat mengkonfigurasi sebuah mobil sesuai dengan spesifikasi mereka hanya dalam beberapa menit, misalnya menentukan warna mobil yang mereka inginkan untuk mobil yang akan mereka beli, hanya dengan mengunjungi website Ford di internet.
  • Berkurangnya kendala inovasi
Yang dimaksud adalah dengan e-commerce, suatu perusahaan dapat menghemat sumber daya karena mereka tidak dipusingkan dengan sulitnya membuat penemuan baru untuk modifikasi produk mereka. Sebagai contoh, perusahaan seperti Motorola (mobile phone) dan Dell (komputer) dapat mengumpulkan para konsumennya yang memesan sebuah produk. Para konsumen dapat membuat suatu daftar mengenai spesifikasi produk baru yang mereka inginkan dan mengirimkannya ke perusahaan secara on-line. Kemudian perusahaan dapat merencanakan produksi suatu produk berdasarkan spesifikasi konsumen dan mengirimkan hasilnya dalam jangka waktu beberapa hari.
  • Biaya telekomunikasi yang lebih rendah
Internet lebih murah dari sebuah jaringan tambahan yang hanya digunakan untuk telepon. Adalah lebih murah untuk mengirimkan sebuah fax atau e-mail via internet daripada melakukan dial telepon secara langsung.
  • Digitalisasi proses dan produk
Contohnya pada kasus produk software dan audio video, produk digital tersebut dapat diunduh atau dikirim lewat e-mail secara langsung ke konsumen melalui internet dalam format digital. Hal ini tentu saja menghemat waktu dan biaya pengiriman produk.
  • Batasan waktu kerja dapat diatasi
Bisnis dapat dijalankan tanpa mengenal batas waktu karena dijalankan secara on-line melalui internet yang selalu beroperasi tiap hari.

Keuntungan e-commerce bagi konsumen:
  • Akses penuh 24 jam / 7 hari
Konsumen dapat berbelanja atau mengolah berbagai transaksi lain dalam 24 jam sepanjang hari, sepanjang tahun di sebagian besar lokasi. Contohnya memeriksa saldo, membuat pembayaran, dan memperoleh informasi lainnya.
  • Lebih banyak pilihan
Konsumen tidak hanya memiliki sekumpulan produk yang bisa dipilih, namun juga daftar supplier internasional sehingga konsumen memiliki pilihan produk yang lebih banyak.
  • Perbandingan harga
Konsumen dapat berbelanja di seluruh dunia dan membandingkan harganya dengan mengunjungi berbagai situs yang berbeda atau dengan mengunjungi sebuah website tunggal yang menampilkan berbagai harga dari sejumlah provider.
  • Proses pengantaran produk yang inovatif
Dengan e-commerce proses pengantaran produk menjadi lebih mudah. Misalnya dalam kasus produk elektronik misalnya software atau berkas audio visual di mana konsumen dapat memperoleh produk tersebut cukup dengan mengunduhnya melalui internet.

Keuntungan e-commerce bagi masyarakat :
  • Praktek kerja yang lebih fleksibel
E-commerce memungkinkan masyarakat bisa lebih fleksibel dalam menentukan tempat bekerja, misalnya mereka dapat bekerja dari rumahnya masing-saing tanpa harus pergi ke kantor.
  • Terhubungnya masyarakat dengan masyarakat lain
Masyarakat di negara berkembang dapat mengakses dan menikmati produk, layanan, dan informasi yang mungkin sulit mereka temukan di daerahnya.
  • Kemudahan akses fasilitas publik
Masyarakat dengan mudah dapat memanfaatkan layanan publik, misalnya layanan kesehatan dan konsultasi serta pembelian resep dokter dengan mengunjungi internet.

dari berbagai sumber…

Leave a comment »

Subneting + VLSM (Tugas Perbaikan)

Nama : Ineu Fajri Pratiwi

NPM : 50407451

Kelas : 4IA12

No. Absen : 21

– Untuk IP yang digunakan 172.16.X.N dimana X merupakan  nomor absen (yaitu 21 ) dan N = nilai IP yang didapat
– Sehingga IP menjadi 172.16.21.0/16 untuk IP awal (Network ID baru)

  • Marketing 50 PC

– 50 IP address + 1 gateway/alamat router + 1 alamat network + 1 alamat broadcast

– Marketing = 50 + 1 + 1 + 1 = 53 (desimal) = 110101 (biner) = 6 digit

– IP total yang digunakan untuk Marketing 2^6 = 64

Untuk subnetmask = 11111111.11111111.11111111.11000000 , prefix = /26
subnetmask = 255.255.255.192 /26

– Untuk alamat network = 172.16.21.0

–  Untuk alamat broadcast merupakan N dari alamat network ditambah IP total – 1. Jadi, 0 + 64 – 1= 63, sehingga didapat alamat broadcast = 172.16.21.63

– Untuk alamat gateway merupakan N dari alamat network ditambah 1. Jadi 0 + 1 = 1, sehingga didapat alamat gateway = 172.16.21.1

Untuk alamat range IP yang tersedia didapat dari alamat antara alamat gateway dengan alamat broadcast. Sehingga range IP Marketing =  172.16.21.2 – 172.16.21.62

  • Finansial 25 PC

– 25 IP adress + 1 gateway/alamat router + 1 alamat network + 1 alamat broadcast

– Finansial = 25 + 1 + 1 + 1 = 28 (desimal) = 11100 (biner) = 5 digit

– IP Total yang digunakan untuk Finansial 2^5 = 32

Untuk subnetmask = 11111111.11111111.11111111.11100000 , prefix = /27
subnetmask = 255.255.255.224 /27

– Untuk alamat network merupakan N dari alamat broadcast sebelumnya ditambah 1, 63 + 1 =64. Sehingga alamat network = 172.16.21.64

– Untuk alamat broadcast merupakan N dari alamat network ditambah IP total – 1. Jadi, 64 + 32 – 1= 95, sehingga didapat alamat broadcast = 172.16.21.95

– Untuk alamat gateway merupakan N dari alamat network ditambah 1. Jadi 64 + 1 = 65, sehingga didapat alamat gateway = 172.16.21.65

– Untuk alamat range IP yang tersedia didapat dari alamat antara alamat gateway dengan alamat broadcast. Sehingga range IP Finansial =  172.16.21.66 – 172.16.21.94

  • TI 10 PC

– 10 IP adress + 1 gateway/alamat router + 1 alamat network + 1 alamat broadcast

– TI = 10 + 1 + 1 + 1 = 13 (desimal) = 110101 (biner) = 4 digit

– IP total yang digunakan untuk TI 2^4 = 16

– Untuk subnetmask = 11111111.11111111.11111111.11110000 , prefix = /28
subnetmask = 255.255.255.240 /28

– Untuk alamat network merupakan N dari alamat broadcast sebelumnya ditambah 1, 95 + 1 = 96. Sehingga alamat network =  172.16.21.96

– Untuk alamat broadcast merupakan N dari alamat network ditambah IP total – 1. Jadi, 96 + 16 – 1= 111, sehingga didapat alamat broadcast = 172.16.21.111

– Untuk alamat gateway merupakan N dari alamat network ditambah 1. Jadi 96+ 1 = 97, sehingga didapat alamat gateway = 172.16.21.97

– Untuk alamat range IP yang tersedia didapat dari alamat antara alamat gateway dengan alamat broadcast. Sehingga range IP TI=  172.16.21.98 – 172.16.21.110

  • HRD 10 PC

– 10 IP adress + 1 gateway/alamat router + 1 alamat network + 1 alamat broadcast

– HRD = 10 + 1 + 1 + 1 = 13 (desimal) = 110101 (biner) = 4 digit

– IP total yang digunakan untuk HRD 2^4 = 16

– Untuk subnetmask = 11111111.11111111.11111111.11110000 , prefix = /28
subnetmask = 255.255.255.240 /28

– Untuk alamat network merupakan N dari alamat broadcast sebelumnya ditambah 1, 111+ 1 = 112. Sehingga alamat network =  172.16.21.112

Untuk alamat broadcast merupakan N dari alamat network ditambah IP total – 1. Jadi, 112 + 16 – 1= 127, sehingga didapat alamat broadcast = 172.16.21.127

Untuk alamat gateway merupakan N dari alamat network ditambah 1. Jadi 112 + 1 = 113, sehingga didapat alamat gateway = 172.16.21.113

Untuk alamat range IP yang tersedia didapat dari alamat antara alamat gateway dengan alamat broadcast. Sehingga range IP HRD=  172.16.21.114 – 172.16.21.126

  • Untuk Skema Jaringannya sebagai berikut :

Nama : Ineu Fajri Pratiwi

NPM : 50407451

Kelas : 4IA12

Leave a comment »

Quiz V-Class Jaringan Komputer Lanjut (SONET)

Nama : Ineu Fajri Pratiwi

NPM : 50407451

Kelas : 4IA12

1. Apakah yang dimaksud dengan komunikasi broadband ?
2. Sebutkan keuntungan SONET !
3. Jelaskan prinsip kerja dari ATM !
4. Apakah yang dimaksud dengan DSL ?

jawaban :

1. Komunikasi Broadband

•Secara umum, Broadband dideskripsikan sebagai komunikasi data yang memiliki kecepatan tinggi, kapasitas tinggi
•menggunakan DSL, Modem Kabel, Ethernet, Wireless Access, Fiber Optik, W-LAN, V-SAT, dsb.
•Rentang kecepatan layanan bervariasi dari 128 Kbps s/d 100 Mbps.
•Tidak ada definisi internasional spesifik untuk Broadband
•Dalam Draft RPM Penataan Pita Frekuensi Radio untuk Keperluan Layanan Akses Pita Lebar Berbasis Nirkabel  (Broadband Wireless Access) diusulkan definisi Broadband adalah layanan telekomunikasi nirkabel yang memiliki kemampuan kapasitas diatas kecepatan data primer “2 Mbps” (E1) sesuai ITU-R F.1399-1.
•Faktor pendorong broadband

Untuk Pemerintah

–Broadband dilihat sebagai infrastruktur penting untuk mencapai tujuan-tujuan pemerintah di bidang sosio-ekonomi.

Untuk mendorong penyediaaan layanan publik seperti E-governance, E-learning, Tele-medicine

•Untuk Penyelenggara Jaringan / Jasa Telekomunikasi
–Suatu pilihan untuk mengurangi penurunan pendapatan dari teknologi lama (POTS/PSTN).
–Potensi tambahan pendapatan dari Layanan Nilai Tambah.
–Potensi penambahan secara eksponensial dalam ARPU.
•Untuk Konsumen
–Tersedianya rentang aplikasi yang lebih banyak dan lebih kaya.
–Akses yang lebih cepat terhadap informasi.
–Layanan yang semakin mengarah konvergensi (VOIP, Video on Demand).
Teknologi Broadband

Infrastruktur Eksisting

•DSL melalui jaringan akses tembaga (DSL over Copper loop)
•Modem kabel melalui jaringan TV Kabel (Cable Modem over Cable TV network)
•Akses Broadband Jalur Listrik (Power Line Broadband Access)

Infrastruktur Baru

•Fiber To The Home (FTTH)
•Hybrid Fiber Coaxial (HFC)

Infrastruktur Nirkabel

•Wireless Access (FWA) / High speed WLL
•Wireless LAN (Wi-Fi) (802.11), WiMax (802.16), I-Burst (802.20), dsb
•V-SAT
•IMT-2000 (3G Mobile): HSDPA/ CDMA-EVDO
Aplikasi Broadband
•Layanan Personal
–Akes Internet Berkecepatan Tinggi (256 kbps dan lebih)
–Multimedia
•Layanan Publik dari Pemerintah
–E-governance
–E-education
–Tele-medicine
•Layanan Komersial
–E-commerce
–Corporate Internet
–Videoconferencing
•Layanan Video dan Hiburan
–Broadcast TV
–Video on Demand
–Interactive gaming
–Music on Demand
–Online Radio

2. Keuntungan SONET
•Synchronous optical network (SONET) menawarkan biaya transport yang efektif pada jaringan akses dan jaringan inti/core. Lapisan optic menyediakan layanan transport untuk aplikasi jarak jauh. Dia juga secara langsung men-support layanan data.
•Keuntungan SONET adalah dapat memberikan fungsionalitas yang bagus baik pada jaringan kecil, medium, maupun besar.
–Collector rings menyediakan interface ke seluruh aplikasi, termasuk local office, PABX, access multiplexer, BTS, dan terminal ATM.
–Manejemen bandwith berfungsi untuk proses routing, dan manajemen trafik.
–Jaringan backbone berfungsi menyediakan konektifitas untuk jaringan jarak jauh.
3. Prinsip Kerja ATM
•ATM telah direkomendasikan oleh CCITT sebagai mode transfer untuk B-ISDN.
•Pada ATM, informasi dikirim dalam blok data dengan panjang tetap yang disebut sel. Sel merupakan unit dari switching dan transmisi.
•Untuk mendukung layanan dengan rate yang beragam, maka pada selang waktu tertentu dapat dikirimkan sel dengan jumlah sesuai dengan rate-nya.
•Sebuah  sel terdiri atas information field yang berisi informasi pemakai dan sebuah header.
•Informasi field dikirim dengan transparan oleh jaringan ATM dan tak ada proses yang dikenakan padanya oleh jaringan.
•Urutan sel dijaga oleh jaringan, dan sel diterima dengan urutan yang sama seperti pada waktu kirim.
•Header berisi label yang melambangkan informasi jaringan seperti addressing dan routing.
•Dikatakan merupakan kombinasi dari konsep circuit dan packet switching, karena ATM memakai konsep connection oriented dan mengggunakan konsep paket berupa sel.
•Setiap hubungan mempunyai kapasitas transfer (bandwidth) yang ditentukan sesuai dengan permintaan pemakai, asalkan kapasitas atau resource-nya tersedia
•Dengan resource yang sama, jaringan mampu atau dapat membawa beban yang lebih banyak karena jaringan mempunyai kemampuan statistical multiplexing
Cara kerja mesin ATM sangat sederhana dan mudah. Jika kamu ingin bertransaksi menggunakan ATM, kamu hanya tinggal memasukkan kartu ATMmu ke dalam mesin. Setelah kartu ATM dimasukkan kedalam mesin, maka kartumu akan dibaca oleh magnetic card reader yang ada didalam mesin. Fungsi dari magnetic card reader adalah sebagai pembaca dan penerima data. Setelah data dibaca, lalu data tersebut dikirim ke sistem komputerisasi bank.  

Saat mesin berhasil membaca data dalam kartu ATM mu, maka mesin akan meminta nomor PIN (Personal Identification Number). PIN ini tidak terdapat di dalam kartu ATM melainkan kamu harus memasukkannya sendiri. Jadi jangan sampai lupa nomor PIN mu yah. Kemudian setelah kamu memasukkan PIN, maka data PIN tersebut akan diacak (di-encrypt) dengan rumus tertentu dan dikirim ke sistem komputerasi di bank yang bersangkutan. Pengacakan data PIN ini dimaksudkan agar data-datamu tidak bisa terbaca oleh pihak lain.

Setelah data-datamu selesai diproses di sistem komputer bank, maka data-datamu akan dikirim kembali ke ATM. Dan kamu akan mendapatkan apa yang kamu minta di mesin ATM tersebut seperti uang tunai, cek saldo, transfer tunai, dan sebagainya.

Pada sebuah kartu ATM terdapat garis yang dinamakan Magnetic Chip. Magnetik Chip tersebut mempunyai fungsi sebagai sensor pendeteksi identitas pemilik kartu ATM. Magnetic Chip sangat sensitif dengan berbagai keadaan, contohnya apabila Magnetic Chip tergesek oleh sebuah benda maka Magnetic Chip tersebut akan kehilangan fungsinya.

Ada dua hal penting yang harus dijaga agar transaksimu di ATM aman, yaitu: Kartu ATM dan PIN. Kedua perangkat ini saling berhubungan erat, sehingga kamu harus selalu ingat nomer PIN mu dan menjaga agar kartu ATM mu tidak hilang. Oh iya, untuk menjaga keamanan, jangan pinjamkan Kartu ATMmu kepada orang lain untuk kepentingan apapun. Simpanlah Kartu ATMmu pada tempat-tempat yang aman dan tidak mudah dijangkau orang lain.

4. DSL
•DSL adalah Teknologi akses yang menggunakan saluran kabel tembaga eksisting untuk layanan broadband.
•“x” berarti tipe/jenis teknologi ; HDSL, ADSL, IDSL, SDSL, VDSL, dll.
•x-DSL mampu membawa informasi suara dan data (termasuk gambar/video) , untuk data dengan kecepatan bervariasi (32Kbps s/d 8 Mbps).
•Karena menggunakan kabel telepon, maka x-DSL  menyediakan bandwidth frekwensi secara dedicated (no-share bandwidth)
•x-DSL mempunyai Bite Rate yang tinggi (asymetric dan symetric)
•x-DSL menggunakan aplikasi Mode IP dan ATM
•x-DSL  mudah instalasi dan langsung dapat dipakai

Latar belakang xDSL

•Jumlah jaringan akses tembaga sangat besar, sehingga ditinjau dari aspek ekonomi sangat menguntungkan untuk dioptimalkan
•Bandwidth transmisinya masih terbatas < 4 kHz hanya untuk informasi suara dengan jarak 5 s/d 10 km
•Sebagian besar hanya digunakan untuk komunikasi suara
•Bandwidth 4 kHz yang digunakan adalah bandwidth tanpa    modulasi, sehingga masih ada “ruang” untuk meningkatkan     kapasitas dengan menggunakan teknik modulasi tertentu.
•Hasil survey hanya sekitar 30 % yang memenuhi syarat untuk menyalurkan layanan non-POTS/ Multi media.
•ADSL (Asymmetric Digital Subscriber Line) : teknologi akses, yang memungkinkan terjadinya komunikasi data, voice dan video secara bersamaan, menggunakan media jaringan akses kabel tembaga 1 pair.
•Disebut asimetrik karena rate / kecepatan transmisi dari sentral ke pelanggan (dowstream) tidak sama dengan  rate transmisi dari arah pelanggan ke sentral (upstream)
•Bit rate downstream ± 8 Mb/s, upstream ± 640 kb/s
•Aplikasi ini digunakan untuk menyalurkan layanan broadband
•Konfigurasi dasar ADSL

•Cara kerja ADSL

Komponen pembangun ADSL :

•Modem ADSL
•Splitter
•DSLAM
•Remote DSLAM
•ATM Switch
•BRAS
•RADIUS
•NMS
•Modem ADSL merupakan perangkat di sisi pelanggan/client sehingga data digital dapat diterima dan dikirimkan melalui kabel telepon, atau berfungsi sebagai pengubah sinyal analog to digital atau sebaliknya. Beberapa merek modem sering dipakai diantaranya : Alcatel, ZTE, Huawei, Dear Global, Allied Telesyn, Ericsson, dsb.
•Splitter berfungsi sebagai pemisah/pengenal antara sinyal analog (voice) ataukah data. Jika yang datang adalah voice, maka informasi tersebut akan diteruskan ke telepon. Jika yang datang adalah data, maka informasi tersebut akan diteruskan ke modem untuk selanjutnya ke computer. Prinsip kerja dari splitter adalah menggunakan filter, Lowpass filter dan highpass filter.
•DSLAM Adalah Konfigurasi perangkat xDSL yang secara fisik modem sentralnya berupa card module yang berisi banyak modem sentral.
•Fungsi DSLAM diantaranya :
–Sebagai filter Voice dan Data
–Sebagai  Modulator / Demodulator DSL
–Sebagai Multiplexer (Sebagai ATM )
•VP Multiplexing
•VC Multiplexing
•Traffic management
•OAM Functionality
•REMOTE DSLAM, Merupakan DSLAM yang dipasang didaerah yang jauh/terpencil tetapi dimungkinkan banyak pelanggan yang menggunakan fasilitas ADSL. Kapasitas dari Remote DSLAM ini biasanya tidak terlalu besar.
•ATM Switch

Fungsi ATM Switch adalah :

–Titik penyambungan/switching (cross connect) antara DSLAM dan RAS
–Sebagai gateway jaringan ATM
–Multiplexer paket ATM dari DSLAM
–Titik interkoneksi antara ATM dan IP
•BRAS

Broadband Remote Access Service berfungsi :

–Melakukan routing dari user ke ISP tujuan
–IP management
–Konfigurasi interface user
–Sebagai ISP gateway
–Sebagai internet gateway
•RADIUS

Fungsi RADIUS adalah :

Authentication à mengidentifikasi user melalui user name, password, calling number
Authorizationà melayani akses user sesuai dengan  service level nya (LDAP)
Accounting à melakukan proses billing and informasi penggunaan seorang user
•NMS

Network Management Sistem berfungsi :

–DSLAM management
•Monitoring status/kondisi DSLAM
•Buka/tutup port pelanggan
•Setting speed pelanggan
•Monitoring status/kondisi modem pelanggan
–ATM Switch management
–BRAS management
–Radius management

Leave a comment »